Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 38, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38296863

RESUMO

Bacteria are key organisms in energy and nutrient cycles, and predicting the effects of temperature change on bacterial activity is important in assessing global change effects. A changing in situ temperature will affect the temperature adaptation of bacterial growth in lake water, both long term in response to global change, and short term in response to seasonal variations. The rate of adaptation may, however, depend on whether temperature is increasing or decreasing, since bacterial growth and turnover scale with temperature. Temperature adaptation was studied for winter (in situ temperature 2.5 °C) and summer communities (16.5 °C) from a temperate lake in Southern Sweden by exposing them to a temperature treatment gradient between 0 and 30 °C in ~ 5 °C increments. This resulted mainly in a temperature increase for the winter and a decrease for the summer community. Temperature adaptation of bacterial community growth was estimated as leucine incorporation using a temperature Sensitivity Index (SI, log growth at 35 °C/4 °C), where higher values indicate adaptation to higher temperatures. High treatment temperatures resulted in higher SI within days for the winter community, resulting in an expected level of community adaptation within 2 weeks. Adaptation for the summer community was also correlated to treatment temperature, but the rate of adaption was slower. Even after 5 weeks, the bacterial community had not fully adapted to the lowest temperature conditions. Thus, during periods of increasing temperature, the bacterial community will rapidly adapt to function optimally, while decreasing temperature may result in long periods of non-optimal functioning.


Assuntos
Temperatura Baixa , Lagos , Temperatura , Bactérias/metabolismo , Estações do Ano
2.
FEMS Microbiol Ecol ; 98(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36150718

RESUMO

Faster bacterial biomass turnover is expected in water compared to soil, which would result in more rapid community adaption to changing environmental conditions, including temperature. Bacterial community adaptation for growth is therefore predicted to have larger seasonal amplitudes in lakes than in soil. To test this prediction, we compared the seasonal variation in temperature adaptation of bacterial community growth in a soil and lake in Southern Sweden (Tin situ 0-20°C, mean 10°C) during 1.5 years, based on monthly samplings including two winters and summers. An indicator of community adaptation, minimum temperature for growth (Tmin), was calculated from bacterial growth measurements (Leu incorporation) using the Ratkowsky model. The seasonal variation in Tmin (sinusoidal function, R2 = 0.71) was most pronounced for the lake bacterial community, with an amplitude for Tmin of 3.0°C (-4.5 to -10.5°C) compared to 0.6°C (-7 to -8°C) for the soil. Thus, Tmin in water increased by 0.32°C/degree change of Tin situ. Similar differences were also found when comparing four lakes and soils in the winter and summer (amplitudes 2.9°C and 0.9°C for lakes and soils, respectively). Thus, seasonal variation in temperature adaptation has to be taken into account in lakes, while for soils a constant Tmin can be used.


Assuntos
Lagos , Solo , Bactérias/metabolismo , Estações do Ano , Temperatura , Água/metabolismo
4.
Ambio ; 49(2): 375-390, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31367885

RESUMO

Browning of surface waters, as a result of increasing dissolved organic carbon and iron concentrations, is a widespread phenomenon with implications to the structure and function of aquatic ecosystems. In this article, we provide an overview of the consequences of browning in relation to ecosystem services, outline what the underlying drivers and mechanisms of browning are, and specifically focus on exploring potential mitigation measures to locally counteract browning. These topical concepts are discussed with a focus on Scandinavia, but are of relevance also to other regions. Browning is of environmental concern as it leads to, e.g., increasing costs and risks for drinking water production, and reduced fish production in lakes by limiting light penetration. While climate change, recovery from acidification, and land-use change are all likely factors contributing to the observed browning, managing the land use in the hydrologically connected parts of the landscape may be the most feasible way to counteract browning of natural waters.


Assuntos
Ecossistema , Lagos , Animais , Carbono , Mudança Climática , Países Escandinavos e Nórdicos
5.
Glob Chang Biol ; 26(3): 1390-1399, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31667991

RESUMO

Increase in surface water color (browning), caused by rising dissolved organic carbon (DOC) and iron concentrations, has been widely reported and studied in the last couple of decades. This phenomenon has implications to aquatic ecosystem function and biogeochemical carbon cycling. While recovery from acidification and changes in climate-related variables, such as precipitation and length of growing season, are recognized as drivers behind browning, land-use change has received less attention. In this study, we include all of the above factors and aim to discern their individual and combined contribution to water color variation in an unprecedentedly long (1940-2016) and highly resolved dataset (~20 times per month), from a river in southern Sweden. Water color showed high seasonal variability and a marked long-term increase, particularly in the latter half of the dataset (~1980). Short-term and seasonal variations were best explained by precipitation, with temperature playing a secondary role. All explanatory variables (precipitation, temperature, S deposition, and land-use change) contributed significantly and together predicted 75% of the long-term variation in water color. Long-term change was best explained by a pronounced increase in Norway spruce (Picea abies Karst) volume-a measure of land-use change and a proxy for buildup of organic soil layers-and by change in atmospheric S deposition. When modeling water color with a combination of explanatory variables, Norway spruce showed the highest contribution to explaining long-term variability. This study highlights the importance of considering land-use change as a factor behind browning and combining multiple factors when making predictions in water color and DOC.


Assuntos
Ecossistema , Água , Carbono , Noruega , Suécia
6.
J Geophys Res Biogeosci ; 125(4): e2019JG005517, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33842182

RESUMO

Riverine colloids are important carriers of macronutrients, trace metals, and pollutants into marine waters. The aim of the current study was to extend the understanding of iron (Fe) and organic carbon (OC) colloids in boreal rivers and their fate at higher salinities. X-ray absorbance spectroscopy (XAS) and dynamic light scattering (DLS) were combined to explore Fe speciation and colloidal characteristics such as size and surface charge and how these are affected at increasing salinity. XAS confirmed the presence of two Fe phases in the river waters-Fe-organic matter (OM) complexes and Fe(oxy)hydroxides. From DLS measurements on filtered and unfiltered samples, three particle size distributions were identified. The smallest particles (10-40 nm) were positively charged and suggested to consist of essentially bare Fe(oxy)hydroxide nanoparticles. The largest particles (300-900 nm) were dominated by Fe(oxy)hydroxides associated with chromophoric molecular matter. An intermediate size distribution (100-200 nm) with a negative surface charge was presumably dominated by OM and containing Fe-OM complexes. Increasing the salinity resulted in a removal of the smallest distribution. Unexpectedly, both the intermediate and largest size distributions were still detected at high salinity. The collective results suggest that Fe(oxy)hydroxides and Fe-OM complexes are both found across the wide size range studied and that colloidal size does not necessarily reflect either Fe speciation or stability toward salinity-induced aggregation. The findings further demonstrate that also particles beyond the typically studied <0.45-µm size range should be considered to fully understand the riverine transport and fate of macronutrients, trace metals, and pollutants.

7.
Environ Microbiol Rep ; 10(4): 493-500, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29733107

RESUMO

Disturbances are believed to be one of the main factors influencing variations in community diversity and functioning. Here we investigated if exposure to a pH press disturbance affected the composition and functional performance of a bacterial community and its resistance, recovery and resilience to a second press disturbance (salt addition). Lake bacterial assemblages were initially exposed to reduced pH in six mesocosms whereas another six mesocosms were kept as reference. Seven days after the pH disturbance, three tanks from each treatment were exposed to a salt disturbance. Both bacterial production and enzyme activity were negatively affected by the salt treatment, regardless if the communities had been subject to a previous disturbance or not. However, cell-specific enzyme activity had a higher resistance in communities pre-exposed to the pH disturbance compared to the reference treatment. In contrast, for cell-specific bacterial production resistance was not affected, but recovery was faster in the communities that had previously been exposed to the pH disturbance. Over time, bacterial community composition diverged among treatments, in response to both pH and salinity. The difference in functional recovery, resilience and resistance may depend on differences in community composition caused by the pH disturbance, niche breadth or acquired stress resistance.


Assuntos
Fenômenos Fisiológicos Bacterianos , Plâncton/fisiologia , Estresse Fisiológico/fisiologia , Microbiologia da Água , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Carbono/metabolismo , Celulose 1,4-beta-Celobiosidase/metabolismo , Concentração de Íons de Hidrogênio , Lagos/microbiologia , Plâncton/classificação , Plâncton/crescimento & desenvolvimento , Plâncton/metabolismo , RNA Ribossômico 16S/genética , Salinidade , beta-Glucosidase/metabolismo
8.
Mar Environ Res ; 138: 36-45, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29680163

RESUMO

Coastal areas display natural large environmental variability such as frequent changes in salinity, pH, and carbonate chemistry. Anthropogenic impacts - especially ocean acidification - increase this variability, which may affect the living conditions of coastal species, particularly, calcifiers. We performed culture experiments on living benthic foraminifera to study the combined effects of lowered pH and salinity on the calcification abilities and survival of the coastal, calcitic species Ammonia sp. and Elphidium crispum. We found that in open ocean conditions (salinity ∼35) and lower pH than usual values for these species, the specimens displayed resistance to shell (test) dissolution for a longer time than in brackish conditions (salinity ∼5 to 20). However, the response was species specific as Ammonia sp. specimens survived longer than E. crispum specimens when placed in the same conditions of salinity and pH. Living, decalcified juveniles of Ammonia sp. were observed and we show that desalination is one cause for the decalcification. Finally, we highlight the ability of foraminifera to survive under Ωcalc < 1, and that high salinity and [Ca2+] as building blocks are crucial for the foraminiferal calcification process.


Assuntos
Adaptação Fisiológica , Foraminíferos/fisiologia , Água do Mar/química , Calcificação Fisiológica , Carbonato de Cálcio , Monitoramento Ambiental , Foraminíferos/química , Concentração de Íons de Hidrogênio , Salinidade
9.
Glob Chang Biol ; 24(8): 3692-3714, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29543363

RESUMO

Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial-aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)-the messenger between terrestrial and lake ecosystems-with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change-driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice-out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans.


Assuntos
Mudança Climática , Cadeia Alimentar , Animais , Peixes , Lagos/química , Rios/química , Estações do Ano
10.
Microb Ecol ; 76(1): 144-155, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29255936

RESUMO

Increases in the terrestrial export of dissolved organic carbon (C) to rivers may be associated with additional loading of organic nitrogen (N) and phosphorus (P) to the coastal zone. However, little is known about how these resources interact in the regulation of heterotrophic bacterioplankton metabolism in boreal coastal ecosystems. Here, we measured changes in bacterioplankton production (BP) and respiration (BR) in response to full-factorial (C, N, and P) enrichment experiments at two sites within the Öre estuary, northern Sweden. The BR was stimulated by single C additions and further enhanced by combined additions of C and other nutrients. Single addition of N or P had no effect on BR rates. In contrast, BP was primarily limited by P at the site close to the river mouth and did not respond to C or N additions. However, at the site further away from the near the river mouth, BP was slightly stimulated by single additions of C. Possibly, the natural inflow of riverine bioavailable dissolved organic carbon induced local P limitation of BP near the river mouth, which was then exhausted and resulted in C-limited BP further away from the river mouth. We observed positive interactions between all elements on all responses except for BP at the site close to the river mouth, where P showed an independent effect. In light of predicted increases in terrestrial P and C deliveries, we expect future increases in BP and increases of BR of terrestrially delivered C substrates at the Öre estuary and similar areas.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Carbono/metabolismo , Estuários , Nutrientes/metabolismo , Água do Mar/microbiologia , Carbono/química , Ecossistema , Monitoramento Ambiental , Água Doce/química , Processos Heterotróficos , Nutrientes/química , Fósforo/metabolismo , Plâncton/crescimento & desenvolvimento , Plâncton/metabolismo , Rios/química , Salinidade , Estações do Ano , Suécia
11.
FEMS Microbiol Ecol ; 93(9)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957586

RESUMO

Microbial decomposers colonising submerged leaf litter are in close spatial proximity with periphytic algae and can use carbon (C) exudates released during photosynthesis. We investigated whether labile C delivered as algal exudates could affect the microbial colonisation and decomposition of leaf litter. Using microcosms, we submerged leaf litter in pond water and monitored fungal and bacterial growth over time and tested the effect of algal photosynthetic exudates by comparing microcosms in light and dark. In order to experimentally assign the effect of algal products to labile C delivery and test for a C driven mechanism, we ran a parallel experiment with microcosms in the dark where we mimicked the delivery of algal labile C by continuously adding glucose. Labile C delivered as algal exudates or glucose resulted in a dominance of fungal decomposers over bacteria, and stimulated the acquisition of more N-rich OM fractions from litter during periods of active fungal growth. Our results highlight that labile C stimulates fungal decomposers and increases N removal from leaf litter. Since fungal necromass is more resistant to degradation than bacterial, we expect that a fungal-dominated litter degradation might contribute to more protected C pools.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Fungos/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/microbiologia , Bactérias/crescimento & desenvolvimento , Água Doce , Fungos/crescimento & desenvolvimento , Fotossíntese , Plantas/metabolismo , Plantas/microbiologia
12.
Environ Sci Technol ; 51(17): 9747-9755, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28836428

RESUMO

Previous studies report high and increasing iron (Fe) concentrations in boreal river mouths. This Fe has shown relatively high stability to salinity-induced aggregation in estuaries. The aim of this study was to understand how the speciation of Fe affects stability over salinity gradients. For Fe to remain in suspension interactions with organic matter (OM) are fundamental and these interactions can be divided in two dominant phases: organically complexed Fe, and colloidal Fe (oxy)hydroxides, stabilized by surface interactions with OM. The stability of these two Fe phases was tested using mixing experiments with river water and artificial seawater. Fe speciation of river waters and salinity-induced aggregates was determined by synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy. The relative contribution of the two Fe phases varied widely across the sampled rivers. Moreover, we found selective removal of Fe (oxy)hydroxides by aggregation at increasing salinity, while organically complexed Fe was less affected. However, Fe-OM complexes were also found in the aggregates, illustrating that the control of Fe stability is not explained by the prevalence of the respective Fe phases alone. Factors such as colloid size and the chemical composition of the OM may also impact the behavior of Fe species.


Assuntos
Ferro/química , Rios , Salinidade , Água Doce , Espectroscopia por Absorção de Raios X
13.
ISME J ; 10(3): 533-45, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26296065

RESUMO

Bacteria play a central role in the cycling of carbon, yet our understanding of the relationship between the taxonomic composition and the degradation of dissolved organic matter (DOM) is still poor. In this experimental study, we were able to demonstrate a direct link between community composition and ecosystem functioning in that differently structured aquatic bacterial communities differed in their degradation of terrestrially derived DOM. Although the same amount of carbon was processed, both the temporal pattern of degradation and the compounds degraded differed among communities. We, moreover, uncovered that low-molecular-weight carbon was available to all communities for utilisation, whereas the ability to degrade carbon of greater molecular weight was a trait less widely distributed. Finally, whereas the degradation of either low- or high-molecular-weight carbon was not restricted to a single phylogenetic clade, our results illustrate that bacterial taxa of similar phylogenetic classification differed substantially in their association with the degradation of DOM compounds. Applying techniques that capture the diversity and complexity of both bacterial communities and DOM, our study provides new insight into how the structure of bacterial communities may affect processes of biogeochemical significance.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Água Doce/microbiologia , Compostos Orgânicos/metabolismo , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Carbono/metabolismo , Água Doce/análise , Filogenia
14.
Environ Sci Technol ; 49(19): 11411-20, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26356812

RESUMO

Increased anthropogenic pressures on coastal marine ecosystems in the last century are threatening their biodiversity and functioning. Global warming and increases in nutrient loadings are two major stressors affecting these systems. Global warming is expected to increase both atmospheric and water temperatures and increase precipitation and terrestrial runoff, further increasing organic matter and nutrient inputs to coastal areas. Dissolved organic nitrogen (DON) concentrations frequently exceed those of dissolved inorganic nitrogen in aquatic systems. Many components of the DON pool have been shown to supply nitrogen nutrition to phytoplankton and bacteria. Predictions of how global warming and eutrophication will affect metabolic rates and dissolved oxygen dynamics in the future are needed to elucidate their impacts on biodiversity and ecosystem functioning. Here, we experimentally determine the effects of simultaneous DON additions and warming on planktonic community metabolism in the Baltic Sea, the largest coastal area suffering from eutrophication-driven hypoxia. Both bacterioplankton community composition and metabolic rates changed in relation to temperature. DON additions from wastewater treatment plant effluents significantly increased the activation energies for community respiration and gross primary production. Activation energies for community respiration were higher than those for gross primary production. Results support the prediction that warming of the Baltic Sea will enhance planktonic respiration rates faster than it will for planktonic primary production. Higher increases in respiration rates than in production may lead to the depletion of the oxygen pool, further aggravating hypoxia in the Baltic Sea.


Assuntos
Nitrogênio , Plâncton/metabolismo , Águas Residuárias , Bactérias/metabolismo , Ecossistema , Eutrofização , Nitrogênio/análise , Oceanos e Mares , Oxigênio/metabolismo , Fitoplâncton/metabolismo , Suécia , Temperatura , Eliminação de Resíduos Líquidos/métodos
15.
Appl Environ Microbiol ; 81(21): 7411-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26276108

RESUMO

pH is an important factor determining bacterial community composition in soil and water. We have directly determined the community tolerance (trait variation) to pH in communities from 22 lakes and streams ranging in pH from 4 to 9 using a growth-based method not relying on distinguishing between individual populations. The pH in the water samples was altered to up to 16 pH values, covering in situ pH ± 2.5 U, and the tolerance was assessed by measuring bacterial growth (Leu incorporation) instantaneously after pH adjustment. The resulting unimodal response curves, reflecting community tolerance to pH, were well modeled with a double logistic equation (mean R(2) = 0.97). The optimal pH for growth (pHopt) among the bacterial communities was closely correlated with in situ pH, with a slope (0.89 ± 0.099) close to unity. The pH interval, in which growth was ≥90% of that at pHopt, was 1.1 to 3 pH units wide (mean 2.0 pH units). Tolerance response curves of communities originating from circum-neutral pH were symmetrical, whereas in high-pH (8.9) and especially in low-pH (<5.5) waters, asymmetric tolerance curves were found. In low-pH waters, decreasing pH was more detrimental for bacterial growth than increasing pH, with a tendency for the opposite for high-pH waters. A pH tolerance index, using the ratio of growth at only two pH values (pH 4 and 8), was closely related to pHopt (R(2) = 0.83), allowing for easy determination of pH tolerance during rapid changes in pH.


Assuntos
Bactérias/efeitos dos fármacos , Água Doce/microbiologia , Lagos/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Rios/microbiologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Água Doce/química , Concentração de Íons de Hidrogênio , Leucina/metabolismo
16.
J Phycol ; 51(4): 768-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26986795

RESUMO

Gonyostmum semen is a freshwater raphidophyte that has increased in occurrence and abundance in several countries in northern Europe since the 1980s. More recently, the species has expanded rapidly also in north-eastern Europe, and it is frequently referred to as invasive. To better understand the species history, we have explored the phylogeography of G. semen using strains from northern Europe, United States, and Japan. Three regions of the ribosomal RNA gene (small subunit [SSU], internal transcribed spacer [ITS] and large subunit [LSU]) and one mitochondrial DNA marker (cox1) were analyzed. The SSU and partial LSU sequences were identical in all strains, confirming that they belong to the same species. The ITS region differentiated the American from the other strains, but showed high intra-strain variability. In contrast, the mitochondrial marker cox1 showed distinct differences between the European, American, and Japanese strains. Interestingly, only one cox1 haplotype was detected in European strains. The overall low diversity and weak geographic structure within northern European strains supported the hypothesis of a recent invasion of new lakes by G. semen. Our data also show that the invasive northern European lineage is genetically distinct from the lineages from the other continents. Finally, we concluded that the mitochondrial cox1 was the most useful marker in determining large-scale biogeographic patterns in this species.

17.
PLoS One ; 9(9): e107500, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25233197

RESUMO

This study reports increasing iron concentrations in rivers draining into the Baltic Sea. Given the decisive role of iron to the structure and biogeochemical function of aquatic ecosystems, this trend is likely one with far reaching consequences to the receiving system. What those consequences may be depends on the fate of the iron in estuarine mixing. We here assess the stability of riverine iron by mixing water from seven boreal rivers with artificial sea salts. The results show a gradual loss of iron from suspension with increasing salinity. However, the capacity of the different river waters to maintain iron in suspension varied greatly, i.e. between 1 and 54% of iron was in suspension at a salinity of 30. The variability was best explained by iron:organic carbon ratios in the riverine waters--the lower the ratio the more iron remained in suspension. Water with an initially low iron:organic carbon ratio could keep even higher than ambient concentrations of Fe in suspension across the salinity gradient, as shown in experiments with iron amendments. Moreover, there was a positive relationship between the molecular size of the riverine organic matter and the amount of iron in suspension. In all, the results point towards a remarkably high transport capacity of iron from boreal rivers, suggesting that increasing concentrations of iron in river mouths may result in higher concentrations of potentially bioavailable iron in the marine system.


Assuntos
Ecossistema , Ferro/química , Rios/química , Sais/química , Monitoramento Ambiental , Biologia Marinha , Oceanos e Mares , Salinidade , Poluentes Químicos da Água/análise
18.
PLoS One ; 8(12): e82510, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349300

RESUMO

Biological invasions often cause major perturbations in the environment and are well studied among macroorganisms. Less is known about invasion by free-living microbes. Gonyostomum semen (Raphidophyceae) is a freshwater phytoplankton species that has increased in abundance in Northern Europe since the 1980's and has expanded its habitat range. In this study, we aimed to determine the genetic population structure of G. semen in Northern Europe and to what extent it reflects the species' recent expansion. We sampled lakes from 12 locations (11 lakes) in Norway, Sweden and Finland. Multiple strains from each location were genotyped using Amplified Fragment Length Polymorphism (AFLP). We found low differentiation between locations, and low gene diversity within each location. Moreover, there was an absence of genetic isolation with distance (Mantel test, p = 0.50). According to a Bayesian clustering method all the isolates belonged to the same genetic population. Together our data suggest the presence of one metapopulation and an overall low diversity, which is coherent with a recent expansion of G. semen.


Assuntos
Biodiversidade , Genética Populacional , Microalgas/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , Ecossistema , Europa (Continente) , Evolução Molecular , Geografia
19.
Environ Microbiol ; 14(9): 2395-404, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22568551

RESUMO

The field of genetic diversity in protists, particularly phytoplankton, is under expansion. However, little is known regarding variation in genetic diversity within populations over time. The aim of our study was to investigate intrapopulation genetic diversity and genetic differentiation in the freshwater bloom-forming microalga Gonyostomum semen (Raphidophyceae). The study covered a 2-year period including all phases of the bloom. Amplified fragment length polymorphism (AFLP) was used to determine the genetic structure and diversity of the population. Our results showed a significant differentiation between samples collected during the two blooms from consecutive years. Also, an increase of gene diversity and a loss of differentiation among sampling dates were observed over time within a single bloom. The latter observations may reflect the continuous germination of cysts from the sediment. The life cycle characteristics of G. semen, particularly reproduction and recruitment, most likely explain a high proportion of the observed variation. This study highlights the importance of the life cycle for the intraspecific genetic diversity of microbial species, which alternates between sexual and asexual reproduction.


Assuntos
Variação Genética , Microalgas/classificação , Microalgas/genética , Fitoplâncton/classificação , Fitoplâncton/genética , Microbiologia da Água , Água Doce , Genótipo , Microalgas/fisiologia , Fitoplâncton/fisiologia , Dinâmica Populacional , Reprodução
20.
Ambio ; 41(1): 44-55, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22270704

RESUMO

The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.


Assuntos
Mudança Climática , Ecossistema , Camada de Gelo , Regiões Árticas , Conservação dos Recursos Naturais , Monitoramento Ambiental , Biologia Marinha , Modelos Teóricos , Oceanos e Mares , Plâncton/crescimento & desenvolvimento , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...